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A direct numerical simulat ion (DNS) of natural turbulent convection in a differential ly 
heated infinite vertical slot has been computed wi th  a mixed f inite difference/Fourier code 
at Rayleigh numbers of R a = l . 0  105 and Ra=5.4  105 . A database containing up to 
second-order budgets has been collected, and the physics of the Reynolds stresses and 
turbulent heat f luxes is analyzed in l ight of the relevant conservation equations. Unusual 
features are the negative production terms and countergradient turbulent transport. 
Near-wall  f low characteristics are strongly influenced by transport of quantit ies from the 
core of the "'Couette f low"  where most of the turbulence is produced. A fairly simple 
second-moment closure, relying on ell iptic relaxation instead of damping functions for near 
wal l  effects, is found to perform fairly wel l  on a global scale. Although the modeling 
approach is open for improvements if a term-by-term analysis is conducted. © 1997 by 
Elsevier Science Inc. 
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Introduction 

The problem addressed here is the simple and ubiquitous natural 
convection flow inside double glazed windows, not for the sake of 
building insulation, but for providing a database against which 
turbulence models can be compared in a simple one-dimensional 
problem ( l -D)  (in the Reynolds-averaged sense). In the power 
generation industry, for example, many of the computational 
fluid dynamics (CFD) applications concern near-wall heat trans- 
fer predictions in the presence of gravity forces. Also, relying on 
heat  removal through natural convection in future plants, instead 
of forced convection, can further  enhance safety. 

Much progress has been achieved in realistic modeling of 
unknown dynamic terms in second-moment closures (Craft et al. 
1991, Launder  et al. 1991, Durbin, 1993. So et al. 1991) thanks to 
databases obtained from direct numerical simulations (DNS) in 
isothermal flows. Little data are available concerning turbulent  
heat  fluxes in wall-bounded flows, with the exceptions of Kasagi 
et al. (1992), Lyons et al. (1991), and Maupu et al. (1993). 

Concerning the natural convection case, to extend the lami- 
nar and transitional simulations of Lee and Korpela (1983), no 
DNS database was available when the present work began. It is 
difficult to perform experiments that assist in modeling, because 
ideal homogeneity in two directions (susceptible to 1-D model- 
ing) and symmetry are nearly impossible to achieve. This lack of 
data has resulted in a fairly wide range of model formulations 
and the determinat ion of constant values related to natural 
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convection in the literature (Peeters and Henkes 1992). Very 
recently, however, Betts and Bokhari (1996) provided detailed 
measurements  in a high-aspect ratio (H/h = 28.6) tall rectangu- 
lar enclosure, exhibiting nearly perfect symmetrical and homoge- 
neous (at midheight) profiles for Rayleigh numbers Ra - 8.6 105 
and 14.3 105 . Phillips (1996) obtained mean and second-order 
correlation results by means of a refined DNS at Ra = 0.056 105 
and 0.157 105. The present DNS at higher Ra numbers, together 
with the independent  computation of Vertsteegh and Nieuwstadt 
(personal communication, thesis to appear in 1996), also provides 
all the terms appearing in the budgets of the heat fluxes and the 
Reynolds stresses. This database was set up in an ensemble of 
electronic files for the "5th E R C O F F A C / I A H R  Workshop on 
refined Flow modeling" (Laurence et al. 1996) and is available on 
request from D. Laurence. 

Although we have discussed the interest in the present un- 
stratified simulation, we should stress its limitations. It is well 
known that most real-life tall enclosures exhibit some stratifica- 
tion effects, because heat tends to accumulate in the upper 
region. This results in stratification effects that tend to dampen 
turbulence and separate the flow in a double boundary layer with 
a stagnant flow in the central region. Attempts by the present 
team to reproduce by DNS this kind of flow failed, because 
higher Ra numbers (and, thus, higher DNS mesh densities) are 
probably required for turbulence to develop against stratifica- 
tion. 

The present DNS corresponds to a very tall enclosure with no 
stratification, again, a rare real-life situation, but one that is 
easily amenable to 1-D second-moment simulation, for which it 
provides valuable information. It must be stressed, however, that 
features of the present flow are largely dominated by the quasi- 
homogeneous shear appearing in the central part of the channel. 
Thus, present conclusions may not hold in general natural con- 
vection cases. 
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Equations, flow configurations and notations 

The incompressible Navier-Stokes equations using the Boussi- 
nesq approximation are written in nondimensional form and as 
deviations from a prescribed analytical basic laminar solution 
(U~3, Tb): 

l 
Ui, i = 0 

ui,t + (uj + Ujb)ui,j = - l p , i  }- ( G~-~ui,j) 

-~aaO,j) j - ujT, j [ O.t + (uj + Ulb)o.j= ( I , b 

1 
+ ~rO~i ,  - uj&,j  ,J 

These nondimensional equations and solutions depend only 
o n ;  

Rayleigh number 

g13 A T D  3 
Ra 

VK 

Grashof number 

g13 A T D  3 
G r = - -  

1) 2 

where g, 13, v are, respectively, the gravity, the dilatation parame- 
ter, and kinematic viscosity. D = 1 is the gap width, AT = 1 the 
temperature difference between walls, and the equations are 
solved for Ra = 105 and 5.4 105, while the Prandtl number is 
Pr = V/K = 0.71. A reference buoyancy velocity can be defined as 
V b =g13 A T D 2 / v ,  ( V  b = RaK/D ). 

The ratio of the friction velocity u* (which will be used for 
normalizing the results) and the reference buoyancy velocity V b 
is: 

u * / V  b = 4.94 10 4 and u * / V  b = 1.637 10 4 

for the lower and higher Rayleigh number, respectively. Simi- 
larly, temperatures will be normalized by 0* = K/U* "dT/dzlwall 
= 0.0515AT and 0.0582AT, respectively. Budgets of the Re 
stresses, turbulent heat fluxes and temperature variance are 
normalized respectively by u*a/v ,  u*30*/v,  U*20*2/K. Sub- 
scripts are used for the velocity components with directions 1,2, 3 
corresponding to x, y, z, respectively, where x is the (vertical) 
streamwise coordinate, y is the spanwise coordinate and z is the 
wall normal coordinate. 

Numerical method 

The equations given in the previous section are solved using a 
mixed spectral/finite difference approach (see GrStzbach and 
W6rner 1992) and Schumann's (1984) combined fast Fourier 
transform (FFT) tridiagonal system solver. For time integration, 
a fractional step scheme is used: Convection; Diffusion + Grav- 
ity terms + Sources terms; Pressure increment + Continuity. 

An Adams-Bashforth scheme is used for the convection step 
and a Crank-Nicolson scheme for the diffusion step. The nonlin- 
ear or convection term is computed in the physical space under 
the semiconservative form and discretized in fourth-order finite 
differences. For the two other steps, space derivatives in the 
homogeneous direction x and y are obtained by FFTs. Deriva- 
tives in the wall-to-wall direction are then discretized with a 
standard second-order finite-difference scheme. Pressure and 

velocity nodes are staggered (no pressure boundary condition is 
required for the latter). 

A large number of points is used in the wall-to-wall direction 
to balance the difference in accuracy between Fourier and 
finite-difference discretizations. A standard hyperbolic tangent 
distribution of nodes yields a strong clustering of nodes near the 
wall. Several tests using different resolutions and domain sizes, 
and converging statistics up to second moments, yielded very 
similar results to the case presently described, and using (n x = 
1 2 8 ,  ny = 32, n z = 128) points for a computational domain of 
(L  x = 2.5, Ly = 1., L z = 1.). 

Results 

The flow characteristics are different from those of a standard 
channel or boundary-layer flow. For the dynamics, 90% of the 
channel width is occupied by a quasi-constant turbulent shear or 
"Couette"  flow, while the remaining near-wall flow is highly 
viscous. As will be seen from the budgets, this Couette flow is the 
turbulence generator, because shear and gravity production terms 
remains very large at the centre. 

First and second moments are shown in Figure 1 with the 
lower R a values plotted on the left and the higher R a values 
plotted on the right half of the figure. Apart from the increase of 
the near-wall slope, the change on the mean quantities with Ra 
is fairly small, with the present scaling on wall fluxes of momen- 
tum u* and heat 0". The corresponding Nusselt number values 
for the channel walls are 2.62 and 5.15, showing that molecular 
heat transfer is still significant. However, at the higher-Ra, the 
rms of the vorticity components are equal in the central part of 
the channel, showing isotropy of the small scales. The Reynolds 
stresses and fluxes also tend to become more isotropic at the 
higher Ra, even though the streamwise velocity fluctuations 
remain significantly larger than the other normal components at 
the center of the channel; and higher than one would expect 
from a "Couette"  flow, a feature attributed here to the gravity 
production term. A ratio of streamwise to wall-normal fluctua- 
tions of about 1.8 was also found by the DNS of Phillips (1996) 
and the experiment of Betts and Bokhari (1996). 

Note that there is no change of sign (in opposition to the 
velocity gradient) in the shear stress, in agreement with the data 
of Phillips (1996). The present observation should not be extrapo- 
lated to remove an experimental uncertainty concerning a possi- 
ble shear stress change of sign in the natural convection vertical 
boundary layer (Tsuji et al. 1991; Kato et al. 1993; Karlsson et al. 
1990). For a single heated plate, the outer flow is able to develop 
with a milder velocity profile; whereas, in the present confined 
flow, transport effect prevents the change of sign in the shear 
stress near the wall, as will be seen form the budgets. 

Although in a shear flow from the normal stress component is 
smaller than the spanwise, the equality of both normal stresses at 
the center is somewhat surprising. However, this finding is also 
present in the data of Versteegh and Nieuwstadt and, to a lesser 
degree, in the data of Phillips (1996) which, nonetheless, also 
show a slight hump at the center for the spanwise component). 

Finally, considering the heat fluxes, we notice a large stream- 
wise component generated by the combination of the wall-to-wall 
flux and the mean velocity gradient, and as will be seen from the 
budgets, it allows gravity to make a significant contribution. To 
illustrate these effects, we recall that the Reynolds-stress balance 
equations are traditionally written as: 

OUiU j OUiU j 
+ U k - -  = Pij + Gij + dPiy + Tij + Diy - ely 

Ot Ox k 
(1) 
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with gradient production, gravity production, velocity pressure- 
gradient correlations, turbulent diffusion, viscous diffusion, and 
dissipation, respectively, on the right-hand side. Similarly, the 
turbulent heat flux balance equations are written as: 

OuiO OuiO O0 __ff_~o OUi 1 Op 
t- U k - -  u iu  k -  + ~g(0"2gil) - - - 0 - -  

Ot Ox k Ox k k t~Xk  ~ ~ . P O X  i 

Gio 
Pio Oio 

0 0 [ ~O-O--+voOU---T] 
- -  k O X - - U i O U k  q-  - -  I K U i  - -  Ox~ [ Ox~ Oxk ] 

Tio Dio 

Ou i O--if- 
- (v  + K ) - - - -  (2) 

O X  k O X  k 

8i0 
Note that, as for the "velocity pressure-gradient correlations", 

qbi0 is not the usual "pressure scrambling" term ("pressure-tem- 
perature-gradient  correlation") since the " temperature-  
pressure-gradient correlation" was not decomposed into "pres- 
sure diffusion" and "pressure-temperature-gradient correlation" 
contributions. Indeed, it will be seen that this decomposition only 
confuses the budget profiles, and "pressure-strain" or "pres- 
sure-scrambling" models actually compare better to the original 
pressure-gradient-related correlations. 

For the present flow, statistically stationary and homogeneous 
in the mean flow direction, the left-hand sides of Equations 1 
and 2 are identically zero, while all production terms are detailed 
below (with 13g > 0): 

Pll + Gll  = - 2 u l u 3 0 x ~  + 2~gUl0 

P13 + G13 = - u 3 u 3 - -  -}- ~gul----O 
Ox 3 

OT 
p ~  = _ 

U 3 U  3 - -  
Ox 3 

aU~ aT _ 
. . . .  UlU~ 3 -  +g~O 2 PlVo + P~o + Glo u3~ O X  3 CqX3 

OT 
P00 = - 2 u - ~ - -  (3) 

c3x 3 

Stress budgets 

Budgets of the Reynolds stresses are displayed in Figures 2 and 
3, again with the lower R a on the left and the higher R a on the 
right half of the figure. We notice that for the latter, the 
turbulence is sufficiently developed for the viscous diffusion term 
to be negligible in the central part of the channel. 

The budget of the shear stress, ulu3,  shows that most of the 
shear production takes place in the central part of the channel. 
Near the wall, this term becomes negative as the velocity gradi- 
ent changes sign (but not the shear stress). The shear stress 
remains positive because of the gravity production, which is 
proportional to the large vertical heat flux. Turbulent transport 
reinforces this feature. The off-diagonal component of dissipa- 
tion is far from negligible, even in the central part of the 
channel, in opposition to what is assumed for high-Re flows. 

The budget of the streamwise velocity fluctuation UlU 1 is 
similar to that of the shear stress. The Couette flow is dominated 
by shear production, while gravity production dominates as the 
velocity gradient changes sign near the wall. This near-wall layer 
again experiences negative turbulent kinetic "production" (P = 
1 / 2 P  H) because of the constant sign of the shear stress. Turbu- 
lence is equally sustained by gravity production and turbulent 
transport, the latter opposite to the molecular diffusion term, 
meaning the countergradient turbulent transport is taking place 
(i.e., transport makes a positive contribution in the wall layer, 
where the longitudinal Reynolds stress is already maximum). 

Positive gravity production is a consequence of the relatively 
strong streamwise heat flux (which would be predicted as zero in 
a simple eddy-diffusivity model) and seems to compensate for 
low or negative shear production, also missed by eddy-viscosity 
models. This compensation explains why low-Re k - e  models 
behave better in natural convection flows than in other flows 
similarly affected by body forces (stratification or rotation). 

The wall-normal and spanwise diagonal components of the 
Reynolds-stress tensor are generated by the velocity-pressure- 
gradient correlations, draining energy form the streamwise diago- 
nal component. As noted earlier, the fact that at the channel 
center the normal and spanwise velocity fluctuations are of 
similar magnitude is surprising and is a consequence of the 
similar levels of the velocity-pressure-gradient correlations (the 
pressure-transfer component associated with gravity will equally 
redistribute energy among normal and spanwise fluctuations, but 
not that associated with shear production, which is expected to 
be dominant). Near the wall, where the wall-normal fluctuations 
are impeded, reverse transfer of energy from the wall-normal to 
the other two components occurs. Transport of the wall-normal 
energy must be higher to compensate for this effect, but then 
dissipation for the wall-normal component is smaller at the 
center, resulting as noticed, in similar magnitudes for the normal 
and spanwise Reynolds stresses. 

The pressure-transport terms are non-zero only for u lu  3 and 
u3u 3. The split of "velocity-pressure-gradient correlations" into 
"pressure strain" and "pressure diffusion" is shown separately in 
Figure 4. Pressure diffusion is, on the average, opposite to 
turbulent diffusion and pressure strain. The "velocity-pressure- 
gradient correlations" can be seen to be easier to model than the 
"pressure strain". This, in effect, is what is represented by the 
models, because pressure diffusion is usually not modeled. 

Heat- f lux budgets 

In the U3~ budget (Figure 4), production is roughly balanced by 
the pressure-scrambling term. For the high-Ra case, the viscous 
diffusion term and turbulent transport term behave as gradient 
transport terms, helping u30 to remain positive, in the vicinity of 
the wall for the turbulent term and even closer to the wall for the 
viscous term. 

The budget of the vertical heat flux ~ is similar to that of 
u lu  3. It seems that for both, dissipation is never negligible, this 
quantity approximately balancing the gravity production. Surpris- 
ingly, this feature is unchanged when the Rayleigh number 
increases; whereas, the dissipation of u30 clearly decreases. We 
might explain nonvanishing viscous effects on ~ by the fact that 
gravity maintains a non-zero correlation between temperature 
and vertical motion at all scales. 

The near-wall value of the ~ dissipation term is seen to be 
near zero, which is significantly different from the nonbuoyant 
channel flow DNS results of Kasagi et al. (1992). Although there 
is no theoretical reason for this value to be zero, this can be 
attributed to the fact that the ul0 heat flux itself goes to zero at 
the wall as rapidly as u30 in connection with the negative 
gradient production term. In contrast with the nonbuoyant chan- 
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Figure 2 
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nel flow case, the heat flux is produced here mainly in the central 
Couette flow. 

In the central region, the production term seems to be very 
sensitive to the Rayleigh number, and this is also reflected by a 
factor of 2 in Ul0, as seen in Figure le. Note that by conservation 
of the wall-to-wall total heat flux, ~ scaled by u* 0* will tend to 
unity. Hence, the production of ~ decreases like the tempera- 
ture gradient. On the other hand, because the shear stress 
increases and the velocity gradient decreases while increasing the 
Rayleigh number, the production of u30 remains fairly un- 
changed. 

Returning to Figure 1, the lower Ra case shows a significant 
maximum of the vertical velocity fluctuation and heat flux near 
the wall ( z / D  = 0.2). On the other hand, the turbulent diffusion 

term behaves somewhat in opposition to standard gradient-diffu- 
sion models; i.e., Ul0 and u~u 3 are transported from the central 
region, where they show a minimum, to the near-wall region 
where they show a maximum. The reality of this curious be- 
haviour is backed up by the fact that such results could be better 
reproduced by a model including the production terms in the 
triple correlation budgets, as shown in Boudjemadi (1996) and 
Boudjemadi et el. (1996). 

Assessment of the database 

The major features of the present results have been confirmed 
by an independent DNS by T. Versteegh and F. Nieuwstadt 
(personal communication, thesis to appear in 1996); namely, the 
non-negative value of the near-wall shear stress, distributions of 
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Figure 3 
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all production terms, and the nonvanishing heat-flux dissipation 
(especially for the vertical flux). Differences lie in the wall values 
of the viscous terms in the heat-flux budgets and in the turbu- 
lence intensities, which were found slightly higher in the wider 
computational domains used by the Dutch team. The latter could 
be due to the fact that imposing a zero global mass flux in a 
domain that is too narrow in the spanwise direction may prevent 

low-frequency fluctuations. On the other hand, the former differ- 
ence could be attributed to the finer grid of the present compu- 
tation (Figure 5). 

The fairly good agreement of the present data, except for the 
temperature variance, with the recent experiment of Betts and 
Bokhari (1996) at a slightly higher Ra value of 8.5 105 is shown in 
Figure 6. 

Figure 4 
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M o d e l i n g  c o n s i d e r a t i o n s  

m e n t i o n e d  i n  t h e  I n t r o d u c t i o n ,  n o  c o n s e n s u s  has  y e t  b e e n  

r e a c h e d  f o r  a " s t a n d a r d "  s e c o n d - m o m e n t  c l o s u r e  f o r  n a t u r a l  

convection flows. For a first comparison the elliptic relaxation 
(nonbuoyant) model of Durbin (1993) was chosen. The approach 
avoids using damping functions and recovers the blocking effect 
that the wall imposes to the normal fluctuations, by processing 
any homogeneous pressure-strain model through the following 

elliptic operator. 

L2~7 2 q ~ i j  _ q ) i j  - -  ~hj with 
k k 

(4) 

Figure 5 
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Here, the "IP" model was used: 

¢p/hj = _CldeV(ui-~ ) k _ c2dev(Pq ) (5) 

Note that in the present approach, ~0ij is considered to represent 
not only the classical pressure strain q~i/, but also pressure 
transport and the difference between stress anisotropy and dissi- 
pation anisotropy. Indeed, dissipation is modelled as 

e 2 
eijlmoo = -~uiuj instead of eijlmod = e'~iy 

(represents) ~ P k 
(6) 

According to Durbin (1993), (see also Rodi and Mansour 1990), 
the primary effect of a wall is the reduction of the wall-normal 
velocity fluctuation; thus, once this feature is captured, further 
damping of the pressure-scrambling terms of the heat-flux equa- 
tion is not a necessity. For simplicity, the standard linear model 
was used (without relaxation): 

[ e X 0Ui 
qOiO = -- [ C°l k ) u i'--'O q- C o 2U k-'O ~ x  k -- C o 3 ~ g i-O'~ (7) 

The classical gradient diffusion hypothesis is used for all trans- 
port terms, e.g. 

a(u-~-) a (C.u-~T] au--fio 
Ox3 Ox3 tro ] Ox3 

(8) 

As for the length scale, a Kolmogorov bound appears in the time 
scale, but is only active in the very near-wall region 

[ k  [ y ~1/2] 
T=max[-~,Cr[-~) l (9) 

An equation for 02 is needed, and is written as 

0"6 "2 OT 0~3( C~u-~T)OO --~ 
. . . .  + K + - -  -- e o (10) Ot ~30 OX 3 O" 0 OX 3 

with an algebraic expression for the variance dissipation 

e° = R T  (11) 

following Haroutunian and Launder (1988) 

1 u~0 uk0 
R 1.5(1 +A20) ' with A20 k0- 7 (12) 

The equation for dissipation, with the addition of the gravity 
production term G to the usual shear production P (i.e., using 
C~3 = 1.) is written as: 

__Oe C*I(P+G)-C~2e + 0 (v+ C.u~u~T) de (13) 

Ot T Ox 3 o" e ] o3x 3 

The previous equations and the constants used herein are identi- 
cal to those of Durbin (1993), except those related to gravity 

C 1=1.22,  C 2=0 .6 ,  C01=2.5, C02=0.45, C03=0.5 

C~* l = l . 4 4 ( 1 + a l P / e )  , a 1=0.1,  Q 2 = 1 - 9 ,  

cr k=1 .2 ,  Gr~=1.65, cr e = 1 . 5  

C r=6.0, CL=0.2 ,  C , = 8 0  

Comparison of this model with the lower-Rayleigh case was 
shown in Boudjemadi et al. (1996). In this case, countergradient 
transport effects were very large and not captured by either the 
Daly and Harlow or the Hanjalic and Launder transport models. 
Good agreement with the DNS was only found by use of an 
algebraic closure of the triple correlation transport equations in 
which the effect of the production terms was found large. For the 
higher-Rayleigh case considered here, the effect of improving 
these transport models was found not so essential. 

Thus, only the results of the simple model described above 
are displayed in Figure 6. The model yields the following friction 
and heat transfer results: u*/V b = 1.56 10 -4 and 0* = 0.066 AT, 
the latter being 10% larger than the DNS values of 1.63 10 -4 
and 0.0582. The subsequent results are shown in Figure 6, 
nondimensionalized with the DNS values of these parameters. 

First, the agreement for the mean velocity and temperature 
profiles is reasonable. The wall-to-wall heat flux and the shear 
stress in the core are overestimated by 10%. However, because 
of the strong and stabilizing coupling between these four vari- 
ables in this particular flow, they are less sensitive than are the 
others to changes in the model coefficients. Figure 6a, b include 
the results of the recent experiments of Betts and Bokhari (1996) 
at a slightly higher value of R a = 8.5 105. Agreement with the 
latter is within the uncertainty of defining u* and 0* by extrapo- 
lating the experimental results to the wall, assuming a linear 
profile. A similar agreement is found for the vertical velocity 
fluctuations (except near the wall, where experiments show 
slightly more damping). However, the experimental value of the 
temperature fluctuations is lower than the DNS by nearly 50%. 

In Figure 6c, d we note that the wall-normal velocity fluctua- 
tion is underpredicted, while the other components are overpre- 
dicted. This suggests that the elliptic relaxation is over-repre- 
senting the blocking of the pressure redistribution by the wall 
proximity. On the other hand, the wall-normal heat flux is 
overpredicted, even in the near-wall region. Recall that elliptic 
relaxation is not applied to the heat fluxes, but present results 
indicate that it probably should. 

Figure 6e shows the budget of the wall-normal Reynolds 
stress. The homogeneous pressure correlation (Equation 5) is 
displayed with a dashed line, and the effective pressure correla- 
tion resulting from the elliptic operator (Equation 4) is repre- 
sented by a solid line. The elliptic relaxation performs well in the 
near-wall layer, but still significantly reduced the return to 
isotropy effect of the homogeneous model at the center. This 
effect is much more evident here than in previous channel flow 
simulations, because the centre of the slot only corresponds to 
z ÷ = 60 in standard wall units. This is precisely the range where 
elliptic relaxation was found effective for channel flows (Wizman 
et al. 1996). 

The temperature variance is well reproduced, although its 
model is simple. On the other hand, the production term of this 
quantity is nearly exact, because the mean temperature and 
wall-normal heat flux are quite close to the DNS values. This 
good agreement of the temperature variance is also a conse- 
quence of the good performance of the a priori crude modelling 
of the corresponding dissipation term (Equations 11, 12). Consid- 
ering Figure 6f), we notice that kinetic dissipation is not very well 
represented by the model. Note that the departure from the DNS 
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Figure 6 Comparison of model predictions (lines) with DNS (symbols): a) and b) mean velocity and temperature (*; experiments 
by Betts and Bakhari); c) rms velocity fluctuations and shear stress; d) heat fluxes and rms temperature fluctuations; e) budget 
of wall-normal Reynolds stress; f) kinetic energy and thermal variance dissipation 

curve can be related to the C~* function, because (as opposed to 
what is found in a channel flow for which the model was devised) 
Pie does not decrease with increasing distance from the wall. 
On the other hand, agreement of the thermal dissipation is 
(perhaps by chance) fairly good (Figure 6). It goes to zero 
abruptly at the wall as a result of the bound in Equation 9 
applied to the time scale T, used also in Equation 11. 

Conclusion 

The DNS database for the turbulent natural convection flow 
between infinite differentially heated vertical walls has been 
analyzed within the scope of second-order modeling. In the 
absence of gravity stratification (in opposition to finite tall enclo- 
sures) the flow features are dominated by a quasi-homogeneous 
shear flow in a wide central region. Gravity, however, still plays a 

large role through the vertical heat flux generated without a 
temperature gradient in this direction. Although simple models 
perform fairly well for these sorts of flows, they actually miss 
unusual effects, such as negative shear production near the walls, 
compensated by gravity production. 

A straightforward application of a second-moment closure 
based on elliptic relaxation, although, until now, only tested in 
nonbuoyant situations, is shown to perform fairly well also. A 
term-by-term analysis of model and DNS results for the budgets 
of the second-order correlations budgets shows again that several 
discrepancies compensate each other. 

Because the behavior of these terms in the near-wall layer is 
different from that of a channel flow, the present case is an 
interesting candidate for a fine term by term tuning. However, 
such a task should be undertaken for all terms of the budgets 
and, because of compensation in the present models, requires 
further work. 
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